
Toward a Unified Spatial Interface for Controlling
Procedural Content Generation

Achim Bunke
Technical University of Munich

Munich, Germany
achim.bunke@tum.de

Daniel Dyrda
Technical University of Munich

Munich, Germany
daniel.dyrda@tum.de

Abstract—Procedural Content Generation (PCG) is central to
modern game development, where structured data input and
controllability are critical to achieving high-quality, diverse, and
context-aware results. This paper proposes a unified spatial
interface for controlling PCG based on the Space Foundation
System (SFS). By extending the SFS location graph with hi-
erarchical organization and semantic attributes, we provide a
shared spatial interface for diverse PCG systems. To integrate
existing algorithms, we propose Data Transformers—modular
components that translate location graph data into algorithm-
specific parameters. We demonstrate the framework’s applicabil-
ity through three implemented scenarios in the context of asset
placement for environmental generation. Our results highlight
the potential of the SFS to streamline PCG workflows, enhance
modularity, and support both automated and designer-driven
content creation. This work contributes a step toward a unified
spatial interface for PCG in games.

Index Terms—Game Engineering, Game Design, Procedural
Content Generation, Space.

I. INTRODUCTION

Procedural Content Generation (PCG) techniques have be-
come a powerful asset in modern game development, en-
abling the efficient production of rich, varied, and scalable
game environments while reducing the manual workload of
designers. The application of PCG often balances the effort
of designing input parameters and the predictability of the
output [1]. More configuration options give designers greater
control over the generated results. This is important when
having a clear vision for the result, reducing the time required
for testing and iterating. A major challenge is the lack of
unified control interfaces: PCG algorithms are typically bound
to tool-specific or engine-specific implementations, hindering
interoperability and complicating multi-system coordination.

A. Our Approach

In this paper, we propose an approach to integrate and
control PCG systems through the Space Foundation System
(SFS) [2]. By standardizing how spatial data is represented and
accessed, SFS enables consistent interaction across heteroge-
neous PCG algorithms, improving the coordination, coherence,
and reusability of PCG systems in game environments.

The SFS formalizes space as a graph of locations, where
each location is defined by insideness—e.g., being inside the

Short Paper

city or being inside a room. Drawing on the notion of space
signatures [3], the approach divides the continuous game space
into discrete segments and models their relation in a location
graph. This graph underpins a location-aware API in the game
engine, augmenting traditional Transform components. This
allows any object to query and subscribe to its location in
realtime, eliminating the need for ad-hoc trigger volumes and
collision checks. By shifting from raw coordinates to semantic
locations, the system streamlines the implementation of spatial
rules, aesthetics, and narrative events. [2]

A common scenario in 3D game development is the block-
out phase, where designers use primitive shapes to define
layout, structure, and gameplay flow. In our approach, the SFS
is integrated at this stage by placing anchor elements (e.g., city
gates, room centers) and delimiter elements (e.g., walls, terrain
edges), automatically generating a location graph that captures
the world’s spatial structure. As the blockout evolves into a
detailed environment, PCG algorithms can be applied using
the location graph to ensure spatially consistent, context-aware
content. For example, an interior furnishing system can target
indoor spaces, while a terrain decorator operates on outdoor
regions, both coordinated through a unified spatial interface
enabling multiple PCG systems to work in parallel.

B. Related Work

The topic of controllability and structured data as input for
PCG is a much-discussed topic in PCG literature. Hendrikx et
al. [4] provide a comprehensive survey of PCG for games,
introducing a six-layered taxonomy of game content and
highlighting challenges that motivate the need for more unified
and automated generation frameworks. Shaker [5] defines key
properties of PCG algorithms, enabling qualitative evaluation
of tool usability and generation outcomes. These properties are
Speed, Reliability, Controllability, Expressiveness & Diversity,
and Creativity & Believability. Controllability refers to the
degree to which PCG can be configured and the predictable
influence over the generated results. Togelius et al. [1] discuss
PCG in the context of balancing the effort of designing input
parameters and the predictability of the output.

PCG algorithms that work with a spatial context include
Unreal Engine’s PCG Framework, which includes a PCG
Biome [6] generating game environments. For this approach,
a manual construction of volumes defining the generation

This is the accepted author manuscript of the following publication: A. Bunke and D. Dyrda, “Toward a Unified Spatial Interface for Controlling Procedural Content Generation,”
IEEE Conference on Games, 2025. DOI: doi.org/10.1109/CoG64752.2025.11114190. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/11114190.
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114190
https://ieeexplore.ieee.org/document/11114190


bounds is required. Van der Linden et al. [7] present different
dungeon generation techniques and note a change in attention
from algorithmic refinement and results toward the integration
of a human designer and precise algorithm control. Smith et
al. [8] present a mixed-initiative approach for level design
of 2D platformers using pacing-based input parameters. Den
Kelder [9] describes a functional game space model as an
architectural concept for gamespace modeling, focusing on
analytical analysis. This model introduces space partitioning
based on functional properties to enable automated generation.

Carli et al. [10] classify PCG techniques as either assisted
or non-assisted based on the level of human effort required.
They link the amount of designer input and control to the
predictability of results while also acknowledging scenarios
where non-assisted generation is advantageous. Moreover,
they observe a growing trend toward hybrid approaches that
combine both methods for enhanced control—an approach our
proposed framework also seeks to support.

C. Identified Gap and Goal

Despite the increasing use of PCG in game development,
most systems rely on fragmented, tool-specific spatial rep-
resentations, such as manually defined volumes or ad hoc
coordinate logic. This fragmentation complicates the coordina-
tion of multiple generators, reduces modularity, and increases
the workload for designers. Existing frameworks rarely offer
a unified, semantic spatial interface that enables consistent
control across diverse PCG systems.

This paper addresses this gap by proposing the SFS location
graph as a generalized interface for location-aware PCG. We
present a conceptual framework grounded in prior research and
game engine architecture. We demonstrate its potential through
concrete implementations, showing how different PCG algo-
rithms can operate cohesively under the SFS model, enabling
greater interoperability, modularity, and spatial controllability.

II. PCG FRAMEWORK

We build on the SFS location graph [2] and extend the
concept of location by introducing two extensions: attributes
and hierarchical structure. These enhancements support a
unified and semantically rich interface for spatial content
generation. The extended SFS is then used as general input by
PCG algorithms to generate aspects of the game environment
depending on the current spatial context. For this, we propose a
framework consisting of three core parts: the Location Graph,
the Data Transformer, and the PCG Algorithms, which include
classical algorithms and novel algorithms. Figure 1 illustrates
the structure and data flow of the proposed framework.

A. Location Graph

1) Attributes: Attributes encode logical, aesthetic, and
gameplay-relevant properties of a location, turning spatial
regions into meaningful content descriptors. While the graph
defines the world’s layout, attributes define its substance. For
instance, a medieval village may consist of a wall (with
attributes such as DefenseValue, Material) and residential

Fig. 1. Schema of the proposed system architecture.

zones (e.g., Culture, Density). Individual houses can carry
specific values such as Importance, Height, or OccupantNPC.
These attributes remain relevant across development stages—
from early blockouts to final polish—providing a consistent
and evolving data model that underpins spatial design. Its
structure and contents are iterated in tandem with the visual
design of game worlds, enabling PCG integration.

2) Hierarchy: To manage complexity and support abstrac-
tion, we extend the graph with a hierarchy that encodes
contains and part-of relationships. This structure groups re-
lated locations into higher-level nodes, capturing spatial order
through parent-child relationships. Inspired by concepts such
as Harel’s higraphs [11] and Unity’s prefab system [12], this
hierarchy supports attribute inheritance with local overrides.
A subspace inherits attributes from an enclosing, higher-
level node. Designers gain a scalable and intuitive interface,
allowing high-level design decisions to influence fine-grained
content generation without redundancy. For example, a city
node may encapsulate buildings and infrastructure, propagat-
ing shared attributes (e.g., architectural style) to its children.
A city’s design aspects propagate to all subspaces, offering
a single design interface compared to hundreds of distinct
buildings. These attributes can be overwritten or removed from
the location node of a subspace for localized variations.

B. PCG Algorithm

Our framework supports two types of PCG algorithm in-
tegration: (1) existing, standalone PCG algorithms adapted
via a Data Transformer and (2) novel algorithms designed
to operate directly on the location graph structure.

1) Data Transformer: A Data Transformer is a middleware
component that maps spatial data to the input parameters
of existing PCG systems. It is tailored to a specific PCG
algorithm and processes the location graph, identifies relevant
nodes within the target spatial bounds, and translates attributes
into algorithm-specific parameters, enabling a more intuitive
design process. This may involve simple attribute extraction
or more complex semantic decomposition. A simple location
description such as Desert might need to be split into different
PCG parameters such as Erosion, Roughness, or Temperature.

2) PCG Algorithm With Data Transformer: Instead of
manually configuring inputs—often a complex and error-prone
task requiring algorithm-specific expertise—designers define
locations and attributes within the graph. However, many PCG

This is the accepted author manuscript of the following publication: A. Bunke and D. Dyrda, “Toward a Unified Spatial Interface for Controlling Procedural Content Generation,”
IEEE Conference on Games, 2025. DOI: doi.org/10.1109/CoG64752.2025.11114190. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/11114190.
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114190
https://ieeexplore.ieee.org/document/11114190


Fig. 2. Examples from the case studies. (a) shows two adaptations of the placeholder tool. (b) shows the results of the asset placer, with (b.i) showing the
result of the generic asset placer with clear borders and (b.ii) and (b.iii) showing the results of the location-aware asset placer with smooth transitions.

algorithms were not designed with semantic spatial models in
mind and cannot natively interpret the structure of a location
graph, thus requiring the Data Transformer to bridge this gap.

3) PCG Location Graph Algorithm: PCG algorithms can
be designed to operate directly on the location graph itself.
Instead of relying on Data Transformers to interpret the graph,
these graph-native algorithms leverage the hierarchy, spatial
relationships, and attributes embedded in the graph as part of
their core logic, eliminating the need for translation layers. By
embedding spatial awareness into the algorithm, this approach
allows for rich interactions with the environment. Structural
relationships and inherited attributes can guide procedural
decisions, potentially leading to higher-quality and more co-
herent results compared to solutions adapted in retrospect.

III. THE SYSTEM IN PRACTICE

We demonstrate the practical utility of the proposed frame-
work through three implemented case studies. Each case uses
the location graph as a unified interface for PCG, showcasing
both native integration and adaptation via Data Transformers.
The cases focus on asset placement during the development
process, from initial blockouts to detailed scene construction.

A. Asset Placeholder

This case focuses on the procedural placement of items
in market stalls across different cities. Each city contains
item stores—modeled as market stalls—that visually display
purchasable items. During early development, neither the
specific item types nor their distribution across cities is known,
and many assets are still in production. To address this, a
PCG algorithm assigns and places items based on spatial
context. An example result of the algorithm for a weapon
store is illustrated in Figure 2-a. Each stall contains predefined
placeholders that are populated with concrete item assets
during generation. The PCG algorithm requires two inputs:
a target stall and a descriptor that determines the category
of items to display. Traditionally, this configuration would
require manual setup for each stall in every city. In our
framework, configuration is automated via the location graph.
Each city node is assigned a ItemType attribute, which encodes
the desired item category. A Data Transformer reads this

attribute and converts it into the required descriptor. Valid item
assets are pulled from a shared asset database. Because the
location graph supports hierarchical attributes, item types can
be defined at different abstraction levels—such as continent,
country, city, or individual stall. This allows default behaviors
with localized overrides. Adding new models or changing item
distributions becomes a matter of updating location attributes,
instantly propagating changes across all relevant stalls.

B. Asset Placer

Procedural placement of natural elements—such as trees,
rocks, and plants—is commonly used to reduce manual work-
load in large environments. This generation depends on the
spatial context, as different biomes often require distinct asset
sets and visual styles. We demonstrate two approaches for
biome-based asset placement: a generic PCG implementation
adapted from Unreal’s PCG Biome Core and a custom location
graph–aware generator. The goal is to generate vegetation
and environmental features across a continent with diverse
biomes. An example result of the various algorithms for simple
blockouts is illustrated in Figure 2-b.

1) Generic Asset Placer: This algorithm uses existing asset
placer algorithms to populate regions. We assign one PCG
instance per biome, and a Data Transformer extracts each
biome’s spatial bounds from its location node, along with
attributes such as Density or RotateAssets, and the asset sets.
The result can be seen in Figure 2-b.i.

2) Location-Aware Asset Placer: The location-aware gen-
erator is created with the location graph as dedicated input
and operates over complex, nested spatial hierarchies. Starting
from a root location (e.g., a country), it traverses the location
graph to identify subregions and their specific attributes.
Position-based asset selection and placement parameters are
dynamically adjusted according to the current location affili-
ation derived from the SFS. This enables consistent genera-
tion across biome boundaries and allows smooth transitions
between adjacent biomes by leveraging the graph’s space
adjacency data, as seen in Figures 2-b.ii and b.iii.

C. Asset Recommender System

Beyond autonomous generation, the SFS also supports
mixed-initiative PCG tools that aid designers during devel-

This is the accepted author manuscript of the following publication: A. Bunke and D. Dyrda, “Toward a Unified Spatial Interface for Controlling Procedural Content Generation,”
IEEE Conference on Games, 2025. DOI: doi.org/10.1109/CoG64752.2025.11114190. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/11114190.
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114190
https://ieeexplore.ieee.org/document/11114190


opment. We implemented an asset recommender system that
assists in interior design tasks, such as populating a living
room with small decorative or functional items (e.g., plants,
books, or tools) after a coarse blockout of larger furniture.

Traditionally, locating relevant assets within nested folder
structures can be time-consuming. Our recommender system
addresses this by predicting contextually relevant assets based
on the designer’s current working location in the engine
editor. The system requires asset-specific metadata encoded
as descriptive attributes. A Data Transformer derives a set
of search parameters from the current location node in the
graph, using attributes such as RoomType, Function, or Style.
These parameters are then matched against the asset database.
An integrated editor plugin displays a flat, filterable list of
recommended assets, streamlining asset selection during level
design. While this system does not generate content directly, it
enhances workflow efficiency and demonstrates how the SFS
can also facilitate intelligent design support tools.

IV. DISCUSSION

Looking at the resulting proposal, several challenges and
limitations must be acknowledged. Constructing and maintain-
ing a detailed location graph with hierarchical attributes can
become labor-intensive as world complexity increases. While
hierarchy reduces redundancy by allowing attribute inheri-
tance, unique locations still require individual specifications.
Although this upfront effort is significant, we expect long-
term efficiency gains through centralized control and reduced
redundancy across systems. Future work could explore semi-
automated tools for attribute generation and maintenance.

The Data Transformer provides a bridge between existing
PCG algorithms and the location graph, but each new algo-
rithm may introduce novel requirements or attribute types.
This creates a growing need to standardize attribute definitions
or support extensibility in a controlled manner to preserve in-
teroperability. The complexity of a Data Transformer strongly
depends on the target PCG algorithm. Simple generators,
such as the item stall example, require minimal processing.
However, algorithms with more sophisticated inputs—such
as terrain generators—may require extensive graph analysis,
aggregation, and transformation logic. Developing these trans-
formers necessitates expertise in both PCG and the semantics
of the location graph. Many PCG tools intentionally simplify
their input interfaces to enhance usability. While this improves
accessibility, it can limit how much of the location graph’s data
can be meaningfully leveraged. In contrast, graph-native PCG
algorithms can utilize spatial data more effectively without
relying on intermediary translation layers.

Despite certain challenges and limitations, the proposed
framework highlights several promising opportunities and
implications for research and development. The quality of
the spatial information encoded in the location graph di-
rectly affects generation quality. Rich spatial metadata can
enhance the contextual awareness of PCG systems. This opens
opportunities for improving existing generation techniques
through better spatial separation and annotation. While our

examples focus on asset placement, the SFS-based approach is
applicable across a wider range of PCG scenarios. As a generic
interface combined with the option for Data Transformers, it
can support diverse spatial PCG approaches. Tools for mixed-
initiative approaches, such as asset recommenders, can benefit
from a shared semantic model, improving workflow coherence.

PCG systems often create new spatial subdivisions as part
of their procedural creation. These can be reflected back into
the location graph, enabling downstream systems to operate
with updated spatial information. Supporting dynamic graph
augmentation would allow for recursive PCG workflows where
generated output feeds into further procedural steps.

V. CONCLUSION & FUTURE WORK

We presented a framework that employs the SFS loca-
tion graph as a unified interface for PCG. By introducing
the concept of Data Transformers, we enable location-aware
parametrization of generic PCG algorithms without requiring
additional configuration. This abstraction facilitates more mod-
ular and consistent content generation across diverse systems.

Our examples—ranging from asset placement to mixed-
initiative tools—demonstrate the system’s versatility in envi-
ronment generation. However, the framework is not limited to
this domain. We see potential applications in areas such as
mission generation, dialogue structuring, and runtime proce-
dural systems, which we plan to explore in future work.

The proposed system represents a step toward a unified
spatial interface for PCG in digital games. We invite the
community to extend the approach with additional Data Trans-
formers and PCG modules to further evolve this direction.

REFERENCES

[1] J. Togelius et al., “Procedural Content Generation: Goals, Challenges
and Actionable Steps,” in Artif. and Comput. Intell. in Games. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2013, vol. 6, pp. 61–75.

[2] D. Dyrda and C. Belloni, “Space foundation system: An approach to
spatial problems in games,” in IEEE Conf. on Games, 2024.

[3] D. Arribas-Bel and M. Fleischmann, “Spatial signatures - understanding
(urban) spaces through form and function,” in Habitat International, vol.
128, 102641, 2022.

[4] M. Hendrikx et al., “Procedural content generation for games: A survey,”
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 9, no. 1, pp. 1–22, 2013.

[5] N. Shaker, Procedural content generation in games, ser. Computational
synthesis and creative systems. Cham, Switzerland: Springer, [2016].

[6] Epic Games, “Pcg biome,” accessed: May 20, 2025. [Online].
Available: https://dev.epicgames.com/documentation/en-us/unreal-
engine/procedural-content-generation-pcg-biome-core-and-sample-
plugins-in-unreal-engine

[7] R. van der Linden et al., “Procedural generation of dungeons,” IEEE
Trans. on Comp. Int. and AI in Games, vol. 6, no. 1, pp. 78–89, 2014.

[8] G. Smith et al., “Tanagra: a mixed-initiative level design tool,” in Proc.
of the 5th Int. Conf. on the Found. of Dig. Games. ACM, 2010.

[9] R. O. Den Kelder, “Towards a framework for analytical game space
design,” Master’s thesis, Universiteit Utrecht, 2012.

[10] D. Carli et al., “A survey of procedural content generation techniques
suitable to game development,” in 2011 Brazilian Symposium on Games
and Digital Entertainment, 2011, pp. 26–35.

[11] D. Harel, “On visual formalisms,” Communications of the ACM, vol. 31,
no. 5, p. 514–530, may 1988.

[12] Unity technologies, “Prefabs,” 2024, accessed: July 30, 2024. [Online].
Available: https://docs.unity3d.com/Manual/Prefabs.html

This is the accepted author manuscript of the following publication: A. Bunke and D. Dyrda, “Toward a Unified Spatial Interface for Controlling Procedural Content Generation,”
IEEE Conference on Games, 2025. DOI: doi.org/10.1109/CoG64752.2025.11114190. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/11114190.
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-content-generation-pcg-biome-core-and-sample-plugins-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-content-generation-pcg-biome-core-and-sample-plugins-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-content-generation-pcg-biome-core-and-sample-plugins-in-unreal-engine
https://docs.unity3d.com/Manual/Prefabs.html
https://doi.org/10.1109/CoG64752.2025.11114190
https://ieeexplore.ieee.org/document/11114190

	Introduction
	Our Approach
	Related Work
	Identified Gap and Goal

	PCG Framework
	Location Graph
	Attributes
	Hierarchy

	PCG Algorithm
	Data Transformer
	PCG Algorithm With Data Transformer
	PCG Location Graph Algorithm


	The System in Practice
	Asset Placeholder
	Asset Placer
	Generic Asset Placer
	Location-Aware Asset Placer

	Asset Recommender System

	Discussion
	Conclusion & Future Work
	References

