
Space Foundation System: An Approach to Spatial
Problems in Games

Daniel Dyrda
Technical University of Munich

Munich, Germany
daniel.dyrda@tum.de

Claudio Belloni
Technical University of Munich

Munich, Germany
claudio.belloni@tum.de

Abstract—Current implementation approaches to spatial prob-
lems in digital games are not optimal. We identify a significant
mismatch between the problem domain and the implementation
domain. In this paper, we present the Space Foundation System,
a technology for game engines based on a graph data structure
focused on location-based semantics. We present a high-level
algorithm and implementation approach for deriving a graph
by subdividing the game’s space based on integrity. The vision
and possible applications of the framework are explored through
the use of a gameplay scenario. The presented approach increases
the abstraction level of the implementation domain and allows
for the implementation of solutions for spatial problems closer
to the problem domain.

Index Terms—Game Engineering, Game Design, Design Engi-
neering, Space, Game Space.

I. INTRODUCTION

According to Salen and Zimmerman [1], a game’s space
is a fundamental element of the experience of digital games.
Similarly to Shell [2], they describe space as a function of
representation (”how the space is displayed to the player” [1,
p. 394]) and interaction (”how a player navigates through the
space” [1, p. 394].) Space is an essential aspect of games; it is
therefore not surprising that many features commonly found
in games are fundamentally spatial.

A. Scenario

To understand spatial features and the underlying prob-
lem, we present a scenario from a generic, fictional action-
adventure game which we reference throughout the text. The
scenario is illustrated in Figure 1.

A group of adventurers embarks on a quest: their journey
begins with the discovery of a letter, cryptically hinting at the
Tower of Ars—a mysterious structure famed for its treasures
yet unknown location. Unfamiliar with the tower’s where-
abouts, the party ventures towards a nearby hamlet, seeking
guidance.

Upon their arrival, the atmosphere shifts; tranquil music
envelops them as weapons are sheathed, signaling safety. They
decide to consult the village elder, who directs them westward,
beyond the great tree, through an enchanted forest, where the
tower lies in wait. From there, they’ll be able to see the tower.

As the adventurers enter the woods, the forest’s monstrous
guardians reveal themselves. One of the player’s companions

proposes a dilemma–whether to sneak past the enemies unno-
ticed or confront them head-on. Emerging victorious from the
forest’s depths, the adventurers are greeted by the sight of the
tower, majestically perched atop a hill.

This visual beacon guides them closer until they stand mere
steps away from its entrance. Here the game’s atmosphere
shifts: the environment darkens under a stormy sky and
thunder can be heard in the distance. The tower’s name is
displayed on screen—Tower of Ars.

But before they can enter, the tower’s locked entrance must
first be opened. The same mystical creatures from the forest
roam nearby - perhaps one of them may drop the key. Through
combat, the adventurers secure the key and enter the tower.
The final challenge awaits at its summit.

Once they reach the top, the adventurers slowly move into
a large room. As they cross the entrance, they hear the roar
of a dragon, landing in the room a moment later with a
thunderous crash. The player’s sword becomes enveloped in
flame, signifying newfound abilities and setting the stage for an
epic confrontation within one of the game’s magical chambers:
the red dragon’s lair.

B. Spatial Features

Many game features are directly related to location and
spatial configuration.

1) Location Intrinsics: Developers often need to specify
location-specific characteristics, including aesthetic elements
like music, ambient sounds, and post-processing effects, as
well as functional aspects such as item placement and en-
vironmental factors. In our scenario, the aesthetics change
upon arrival at the tower. The creatures’ loot table is adapted
depending on their location within the game, with the creatures
in front of the tower having a chance to drop the tower key.

2) Story: Narrative progression in games is deeply tied to
the traversal of space [1], [3]. Narrative events like cutscenes
and dialogues are often triggered by the player reaching
specific locations, while the question of temporal distance is
left open due to the inherent interactivity of the medium. In the
scenario, the villager introduces the quest upon the player’s
arrival in the hamlet, the companion introduces gameplay
opportunities after spending some time in the forest, and
the dragon’s animation is played upon reaching the top of
the tower. Besides the distribution of narrative events in

This is the accepted author manuscript of the following publication: D. Dyrda and C. Belloni, “Space Foundation System: An Approach to Spatial Problems in Games,” IEEE
Conference on Games, 2024. DOI: doi.org/10.1109/CoG60054.2024.10645661. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/10645661.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG60054.2024.10645661
https://ieeexplore.ieee.org/document/10645661


Fig. 1. The scenario’s environment (enemies as red spheres). The right side shows the environment as subdivided by integrity of the space.

space, their content also often depends on spatial qualities.
Quests often require navigating to objectives defined by spatial
landmarks. The villager introduces the quest and explains the
path to the tower by referencing the landmarks found along
the way.

3) Rules: Many rules in games are specified in relation to
space. Certain mechanics, such as saving the game progress,
initiating combat, or using certain skills, may be restricted to
specific locations. In our scenario, combat cannot be initiated
in the village’s safe zone, and special abilities can be used
in designated areas like boss arenas. Rules are often defined
regarding space. Boss behavior, like initiating the fight or
resetting aggro, depends on the player’s location. Entering new
locations can trigger in-game effects, such as experience gains,
achievement unlocks or displaying the location’s name.

C. Problems

This paper addresses the central issue of how these features
are implemented in modern game engines. It is primarily
concerned with how game engines handle information about
the location of agents in the game’s space. All of the afore-
mentioned spatial features rely on a more abstract concept than
exact positions which we will call location. Their problem
domain revolves around determining the location an agent is
in, detecting location changes, and being able to understand
routes between two locations in the game’s space.

Currently, a naı̈ve solution to derive location-related in-
formation from a position using common game engine fea-
tures often involves using the engine’s physics system to
approximate locations and detect location changes of agents.
Developers might place a set of primitive shapes as trigger
collider volumes to approximate the location of interest and
execute specific behavior upon collisions with the player
or other agents. This process takes time and can introduce
errors if not created or updated carefully. The process results
from game engines providing features that primarily reside in
the implementation domain (usually concerning the game’s
fundamental handling of space, such as coordinate space,
vectors, and quaternions), while the problems we attempt to
address require a higher level of abstraction.

It should be noted that game engines also address this
issue by taking similar, though more limited, steps. They

include built-in solutions like Unity’s LookAt() function, which
provides an interface to manage the rotation and spatial con-
figuration of two objects without delving into the complexities
of position vectors, Euler angles, or quaternions.

D. Goal

The goal of this paper is to present a technology for
game engines that addresses spatial problems. This technology
aims to reduce implementation complexity and to better align
solution approaches with the domain of spatial features.

II. VISION

We propose a game engine subsystem dedicated to solving
spatial problems: the Space Foundation System (SFS), an
independent component of the Gameplay Foundation (see
model in [4, p.39]). The SFS enables every object in the game
to determine its current location and detect location changes
in realtime during runtime.

A. Location

Game rules are often directly linked to location. By location,
we refer to the term commonly used in everyday language,
indicating where something exists or where an event occurs
as perceived by humans according to its intended use or
inherent characteristics. In this context, we define a location
as a specified subset of elements within the game’s space
that possesses the quality of insideness, meaning it can be
perceived by the player as being inside it (e.g., in the hamlet
or in the dragon’s chamber). Thus, our concept of location
is a discretization of space: a location is a distinct element
enclosed by delimiting spatial features that partition the space
into disjoint inside and outside subspaces.

It follows that the dimension of a location in an n-
dimensional space also has n dimensions. As [4] notes, the
most prevalent numbers of dimensions in digital games are
two and three, typically represented in game engines through
Cartesian coordinates. A three-dimensional location is defined
as a volume, often depicted as a mesh, whereas a two-
dimensional location is represented as an area, such as a
polygon. Consequently, locations in one-dimensional spaces
are described by line segments, and zero-dimensional spaces
are defined using sets to represent collections of elements.
Figure 2 illustrates this definition of a location.

This is the accepted author manuscript of the following publication: D. Dyrda and C. Belloni, “Space Foundation System: An Approach to Spatial Problems in Games,” IEEE
Conference on Games, 2024. DOI: doi.org/10.1109/CoG60054.2024.10645661. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/10645661.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG60054.2024.10645661
https://ieeexplore.ieee.org/document/10645661


3D 2D 1D Set

Fig. 2. A visualization of location in 3D, 2D, 1D, and as a set.

From the concept of insideness, we can also derive the
relations of IsNeighbor, which we define as the potential
for immediate change from being inside one entity to being
inside another, and semantic paths between locations, which
we define as a sequence of changes of insideness in the sense
of IsNeighbor. This location-based perspective allows us to
move from a purely geometric representation of the scene to a
semantic specification of the game’s space through the concept
of location.

B. Transform

In game engines, we typically specify an object’s position,
rotation, and scale using a Transform component. According
to the Unity Scripting API [5], every object in a scene has a
Transform component, with the engine storing the position as a
Vector3. This means that regardless of an object’s dimensions,
it can be associated with a position in space. Godot follows a
similar approach with Transform2D and Transform3D, repre-
sented respectively by 2×3 and 3×3 matrices [6]. Our vision
is to enhance the concept of transform components (or an
analogous interface in other game engines) with the location
API, ensuring that every object in a scene has a transform that
grants access to its location. Consequently, each object can be
linked to a specific location in space. Thus, the engine offers
functionality to directly query the player’s location through
hypothetical calls such as player.transform.location, returning
the location object with the location identifier. This property is
designed to be reactive, allowing to subscribe to notifications
about changes at runtime.

C. Features of the Space Foundation System

The SFS provides the following features via a static class:
1) IsInsideOf(transform, location): Returns true if trans-

form is in location location.
2) IsNeighbor(location1, location2): Returns true if loca-

tion1 and location2 are neighbors of each other. We define
neighborhood as sharing a delimiter.

3) HasRelation(location1, location2, relation): Returns
true if there exists an edge (location1, location2) in relation.

4) GetShortestPath(location1, location2, optional rela-
tionMask): Returns a path connecting location1 with loca-
tion2. The relations to be considered for the computation can
be restricted via relationMask. The weight for the calculation
can be defined within the SFS. The resulting sequence is not
a concrete path, as a navigation mesh feature could retrieve it.
Instead, it is a sequence of locations that provides information
about the route via data associated with the locations.

5) Subscription: Allows subscribing to a location to be
notified when an agent enters or leaves the location at runtime.

Further features can be derived from this modest set via
extensions of the SFS or custom systems, such as linking data
to locations and querying data via location identifiers.

D. Challenges

We identify the following core challenges to reach our goal:
C1 Space Topology Model: Creating a framework for the

modeling of locations and relations.
C2 Identification of Locations: Subdividing space by the

integrity of space.
C3 Identification of Relations: Determining relations

within the resulting discrete set of locations.
C4 Location System: Providing a general game engine

component for working with the resulting data structure.

III. RELATED WORK

We are unaware of a generalized interface for game en-
gines that implements the concept of location based on the
integrity of space. We dedicate this section to research that
provide meaningful approaches to abstracting a game’s space
to locations.

A. Level Design

Existing research on level design provides many concepts
applicable to their design, understanding, and, albeit indirectly,
abstraction of space.

Totten [7] proposes various categorizations of space based
on their characteristics. While this does not present a solution,
these categories can be useful for the abstraction of space.

In the article on Molecule Design, Azar [8] advocates
for a topological approach to level design by proposing a
graph-based approach to the design of games’ spaces which
emphasizes their topological features. While our work shares
this vision, molecule design is, as the name indicates, a design
tool and needs a more rigorous underlying structure to support
a formal framework, especially concerning the representation
of spaces through graphs.

In their thesis, Kelder [9] aims towards formalized (proce-
dural) game space creation with an emphasis on game design
patterns. To achieve this goal, they present a data structure
for representing spaces called the functional game space
model. The author describes it as ”a model for architectural
game-space in space driven-games to enable reasoning on an
analytical design methodology” [9, p. 100]. While this model
satisfies our need for a formal representation of space, it lacks
the potential to meaningfully address problems outside of the
domain of procedural content generation.

B. Game Analysis

Many approaches from game research emphasize the anal-
ysis of spaces’ ludic qualities. Maram et al. [10] investigate
the measurement of player experience through player strate-
gies and decision patterns based on spatial abstraction. They
describe a spatial abstraction process based on domain knowl-
edge and provide two examples. However, the paper lacks a

This is the accepted author manuscript of the following publication: D. Dyrda and C. Belloni, “Space Foundation System: An Approach to Spatial Problems in Games,” IEEE
Conference on Games, 2024. DOI: doi.org/10.1109/CoG60054.2024.10645661. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/10645661.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG60054.2024.10645661
https://ieeexplore.ieee.org/document/10645661


comprehensive procedure for implementing this abstraction in
practice, particularly within a game engine.

C. Scene Graph

Another approach currently present in most game engines
is the scene graph, a hierarchical data structure containing
all elements in the scene, and thus a potential candidate for
spatial solutions. While its merits should not be understated,
the permanent conflict between its role in the render pipeline
and its role as a more design-focused tool for representing a
game’s space makes the need for a dedicated framework more
apparent [11], [12]. We argue that this conflict is the result
of scene graphs, as made available by most game engines,
presenting themselves as ”a combined structure for communi-
cating, rendering, execution, and modeling” [11, p. 57], or
at least not stating otherwise. Currently, naı̈ve approaches
to the scene graph that focus exclusively on modeling and
spatial arrangements can affect the game’s performance due
to the scene graph’s role in the rendering pipeline. With this
in mind, developing a data structure dedicated to design and
implementation independently of execution is reasonable.

D. Architecture & Urban Planning

Attempts to formalize and discretize natural space are not
novel in architecture and urban planning.

The development of patterns in the highly influential A
Pattern Language [13] has undoubtedly inspired the same
approach to level design that is found, among many others,
in [14], [15] and [16].

Lynch [17] focuses on cities’ legibility and proposes that
individuals develop mental maps of urban areas, which consist
of five spatial elements: paths, edges, districts, nodes, and
landmarks. Further pursuits of these concepts reach, among
many other fields, into level design (one example is [7].)

Spatial signatures are a recent attempt at tessellating (effec-
tively discretizing) urban spaces that makes use of ”two per-
spectives of how space can be understood and organized” [18,
p.5]. These perspectives focus respectively on delimiters,
which ”delimit the landscape and partition it into smaller, fully
enclosed portions” and anchors, ”a discrete set of relevant
features” [18, p.5].

Space syntax analysis deals with a formal methodology for
analyzing (real) spaces through spatial abstractions. Graphs
are used to represent and analyze space analogously to the
goal of this paper. The discretization of a space into a set of
nodes occurs by subdividing any given concave space into the
least possible number of convex sub-spaces. The graph’s edge
relation represents accessibility between nodes [19], [20].

IV. SOLUTION APPROACH

While the concepts discussed above provide valuable con-
tributions towards a solution, the space signatures suggested
by [18] stand out for their potential. The comprehensive
space tessellation outlined in their work offers a promising
method for formalizing game spaces through partitioning. Our
proposed solution synthesizes various elements from Section

III, positioning the space signatures from [18] as the central
point of reference for our approach. To address the challenges
identified in our vision, we start with a general overview and
propose a graph-based data structure to model the topology
of space (C1). After this, we introduce the general concept of
identifying locations by subdividing space via discretization
based on the integrity of space (C2) and identify the spatial
relations between the resulting locations (e.g., IsNeighbor)
(C3). Finally, we present the concrete algorithm for our
approach. Lastly, we show how this can be incorporated into a
game engine component that provides functionality based on
the resulting data structure (C4). For the rest of the paper, we
will mainly focus on continuous three-dimensional space as
commonly found in modern games. Solutions for 2D, 1D, and
0D can be applied accordingly.

V. THE LOCATION GRAPH

The cornerstone of our proposed methodology is the con-
ceptualization of a location graph, which serves as the foun-
dational data structure for encoding spatial relationships. This
graph, designed for both human and machine readability, fa-
cilitates the serialization and visualization of spatial topology,
underpinning subsequent algorithmic applications.

Nodes within this graph correspond to a comprehensive
partitioning of the game’s space, achieved through a process
informed by the principle of spatial integrity, which will
be elaborated upon in the following sections. Each spatial
segment is interpreted as a location and encapsulated as a
graph node. Semantic data about the location are attributed
accordingly. Spatial connections between nodes are established
based on their proximal and relational adjacency, offering a
structured representation of the game space’s topology.

Formally, the graph is defined by a set of subspace ele-
ments S and a collection of binary relationships Ri, with a
foundational minimal relationship R0 signifying direct neigh-
borhood through a shared delimiter. Additionally, application-
specific relationships may be introduced to address the unique
requirements of the game’s mechanics and rules. The formal
structure is designed in a way that allows future enhancements,
such as hierarchical abstractions within the graph, to support
more complex spatial interpretations.

VI. DISCRETIZING SPACE WITH DELIMITERS & ANCHORS

Our approach relies on the discretization of continuous
space into individual portions based on the integrity of space.
The concept of wholeness in spatial perception, known as
integrity of space or genius loci, denotes the perceived com-
pleteness of a space relative to its surroundings, as highlighted
by [7]. This notion is fundamentally interpretative, suggesting
that spaces are evaluated for their holistic integration within
a larger spatial context. To mitigate the subjective variability
inherent to this interpretation, one might consider quantifying
integrity based on degrees of spatial closure. Such a quality is
pivotal to our earlier discussions on location, aiming to ensure
that each distinct whole space is accurately represented by a
dedicated node within the resultant graph structure.

This is the accepted author manuscript of the following publication: D. Dyrda and C. Belloni, “Space Foundation System: An Approach to Spatial Problems in Games,” IEEE
Conference on Games, 2024. DOI: doi.org/10.1109/CoG60054.2024.10645661. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/10645661.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG60054.2024.10645661
https://ieeexplore.ieee.org/document/10645661


Fig. 3. Examples of different delimiters, such as fences, stairs, floor tiles and walls.

According to the insights from III and mainly [18], we can
derive a space’s topology based on closure by identifying ele-
ments that separate or aggregate a given space and using them
to derive a space’s integrity. The extensive use of architectural
concepts in level design suggests that this assumption is valid
in the context of games’ spaces and how players perceive
them. To reduce subjectivity as much as possible, we propose
a detailed algorithm to determine wholeness concerning the
organization of a space, based on the two fundamental spatial
elements used in [18]: delimiters and anchors. In contrast
to their application in [18], we aim to apply both concepts
simultaneously to derive one meaningful partition of the space,
which will form the node set of the location graph.

A. Delimiters

1) Delimiting Features: The concept of delimiter is based
on delimiting features ”...conceptualised as a line that acts
as a boundary, dividing space into what falls within each
of its sides” [18, p. 5]. This concept is closely related to
edges, as described by Lynch [17]. In the context of urban
spaces, delimiters ”...include the road and street networks,
but also others such as railways or rivers” [18, p. 5]. In
contrast, in (digital) architecture, delimiters usually take the
form of vertical planes or other spatial features that break
spatial or visual continuity. Ching [21] describes the role of
vertical forms as such: ”Vertical forms have a greater presence
in our visual field than horizontal planes, and are therefore
more instrumental in defining a discrete volume of space and
providing a sense of enclosure and privacy for those within
it. In addition, they separate one space from another and
establish a common boundary between the interior and exterior
environments” [21, p.134]. This brief characterization is easily
brought into the context of a game’s spaces, which heavily rely
on (visible or invisible) vertical planes meant to restrict player
movement and organize their spatial perception.

2) Specifying Delimiters: Regarding concrete in-engine im-
plementations, delimiters are polygons or segments extending
in a vertical direction. One possible approach is the imple-
mentation of delimiters as typical game objects that may be
used to freely specify a delimiter’s location in the editor by
insertion into the scene. As an object, it may be specified as a
child of an existing object in the context of the scene graph to
keep it attached to the parent’s transform when rearranging
the scene. Otherwise, the two extremities may be attached
to existing geometry independently for additional flexibility.

In addition to this explicit procedure, an implicit approach
is also possible. Since borders are primarily conceived as
insurmountable limits, they inevitably correlate to the presence
of a mesh or collider component. This enables the engine to
automatically detect and analyze these delimiting elements.

3) Delimiter Data: In addition to their presence, delimiters
also carry data that identifies their delimiting characteristics,
essentially detailing the nature of the relationship between
adjacent spaces. This information specifies how spaces on
either side of a delimiter are interconnected. Independently
of any supplementary data, a delimiter inherently establishes
a fundamental relationship of adjacency, or minimal rela-
tion, between the two subspaces it separates. The potential
for additional, more complex relationships is significant. For
instance, these relationships may indicate the feasibility of
traversal between spaces for players or agents. A wall, acting
as a delimiter, precludes passage, whereas a change in terrain
texture from grass to rock permits movement. Similarly, a
transition from shore to water may allow traversal under
specific conditions, such as the agent’s capability to swim or
dive. Examples are shown in Figure 3.

B. Anchors

1) Anchor Concept: The concept of anchors describes
”...elements that do not partition space per se, but act as
origins to which the rest can be attached” [18, p.5]. Anchors
are complementary to delimiters and act as central elements
within a space. Similarly to the concept of districts and
landmarks presented by Lynch [17], they represent the spatial
elements that evoke a sense of integrity in their (immediate)
surroundings. They divide space between the part that belongs
to the anchor and the space beyond it. It follows that anchors
possess a subspace of influence based on the size of the space
they dominate. This principle follows the human tendency to
organize space around landmarks and other reference objects.

2) Specifying Anchors: Anchors can be formally defined
as points representing the center of the anchor elements and
a maximal distance that models their subspace of influence.
As such, anchors are implemented as components attached to
objects in the context of a transform. The presence of the
component marks a feature as an anchor. Further details of
the anchor element are specified on this component. Anchor
points are specified by placing reference points in the scene
or identifying spatial features as anchors. In practice, elements
that have meaning to the player are good candidates for

This is the accepted author manuscript of the following publication: D. Dyrda and C. Belloni, “Space Foundation System: An Approach to Spatial Problems in Games,” IEEE
Conference on Games, 2024. DOI: doi.org/10.1109/CoG60054.2024.10645661. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/10645661.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG60054.2024.10645661
https://ieeexplore.ieee.org/document/10645661


Fig. 4. A 2D example illustrating the steps of the proposed algorithm. The
upper graphics show a 2D environment with anchors displayed as colored
circles with their corresponding subspace colored accordingly, delimiters
displayed as dotted lines (elements such as differences in floor textures), and
solid lines (for non-traversable elements like walls.) The lower graphics show
a set or graph representing the location graph.

anchors. Objects with a function, such as specific components
attached to a game object, could be identified as anchors
automatically. In principle, anchor elements don’t need to be
points themselves and may instead be meshes, volumes, or any
other kind of structure as long as it fulfills the semantic role
of an anchor. For now, we will focus on anchors represented
as points to avoid edge cases of overlapping anchors, or
anchors and delimiters. In these cases, we can use the common
transform component as the anchor’s central point.

C. Location Graph Creation

The following describes the procedure for deriving a lo-
cation graph from a space using delimiters and anchors. The
procedure is illustrated in Figure 4. An example in the context
of our scenario is illustrated in Figure 1.

Anchors are represented by nodes. Afterward, the volume
of each node is expanded until it encounters delimiters. The
algorithm comprises the following steps:

1) Preparation: The specification of all delimiters and
anchors, as presented in the latter half of VI-A and VI-B,
corresponds to the preparation step, as a complete list thereof
is required by the following algorithm.

2) Anchor Step: Each anchor in the scene is added as a
node to the location graph. The origin of this anchor is stored
for further processing.

3) Expansion Step: Anchor points propagate their influence
within their immediate surroundings through a uniform flood-
ing process, defining their respective subspaces of influence.
This follows the methodologies employed in forest fire spread
or flood fill algorithms. The propagation is constrained by
encountered delimiters, the maximal distance to the anchor’s
origin, or the influence zones of other anchors. Encountering a
delimiter halts the spread, leading to the storage of the anchor’s
identifier in a list of the delimiter or a general list in case the
halt was due to an overlap with another anchor’s influence.
This mechanism ensures that, by the conclusion of this phase,
every spatial point within the radius of an anchor is attributed
to the nearest anchor, respecting delimiter boundaries. The
ultimate goal is to assign each space segment to a unique
anchor, facilitating clear and unambiguous spatial partitioning.
The resulting volumes are processed into a format representing

the subspace, such as a mesh in the case of a 3D space. They
are stored with a link to the space identifier to allow further
access.

4) Resolving Underspecification: The initial expansion step
may not guarantee complete space assignment due to the
potential presence of spatial points not assigned to any anchor,
leading to underspecification. This issue is particularly evident
in spaces fully enclosed by delimiters without an internal
anchor (see VI-C-b) or spaces not within the influence radius
of any anchor. To address this challenge, we differentiate
between two cases: fully enclosed spaces and the rest. For
fully enclosed spaces, we introduce a nameless identifier
for each underspecified space, ensuring its inclusion in the
spatial model as a distinct node with the associated subspace.
This approach effectively resolves the partitioning dilemma
by adequately representing enclosed, anchor-less spaces. For
the second case, any space not encompassed by delimited
boundaries is aggregated under a universal void node. This
categorization serves a dual purpose: it guarantees that the
API returns a valid location for any query, thereby formally
eliminating underspecification concerns. In the future, the
machine will be able to derive the semantics of underspec-
ified spaces based on their surroundings, avoiding the need
for nameless identifiers in favor of automatically generated,
specified identifiers.

5) Optimization: The results of the subspaces are stored
for further access. To allow for fast access when queried
for insideness (point-volume intersection calculations for 3D
spaces), we create an optimized search structure for the
collection of subspace data. This is especially important for
2D and 3D. Any approach used for physics optimization, such
as k-d trees or quadtrees, is conceivable (compare [4]).

6) Spatial Relations: At this point, we have computed a
partition of the game’s space, which acts as a node set for the
location graph. We now focus on defining the spatial relations
that interconnect these partitions, thus forming the graph’s
edge set. This involves a detailed examination of the delimiters
that define each partition, a process achieved by iterating
through delimiter-associated node lists, including a general
list for non-specific relations. The analysis aims to identify
which partitions are adjacent, based on shared delimiters, and
to assign appropriate relational attributes to the edges of the
location graph. A foundational relation, R0, denotes simple
adjacency between nodes, defined by a shared delimiter or
shared influence border. Beyond this, the system incorporates
additional sets of relations corresponding to specific spatial
interactions allowed by the delimiters. For instance, a wall
implies only an adjacency relation (R0), whereas a door that
can be traversed introduces both adjacency and a traversable
relation, populating both R0 and RTraversable in the graph.

D. The Space Foundation System API

As described in our vision, we propose a static class SFS
implementing the features presented in II-C and extend the
established transform component of game engines with a
location variable as introduced in II-B. Internally, the SFS

This is the accepted author manuscript of the following publication: D. Dyrda and C. Belloni, “Space Foundation System: An Approach to Spatial Problems in Games,” IEEE
Conference on Games, 2024. DOI: doi.org/10.1109/CoG60054.2024.10645661. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/10645661.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG60054.2024.10645661
https://ieeexplore.ieee.org/document/10645661


maps positions to the corresponding location identifier via
point-subspace intersection tests with all subspaces. It allows
computations on the location graph, such as finding the short-
est path between two locations. Here, common graph-oriented
approaches and algorithms such as A* are conceivable and up
to the concrete implementation.

VII. THE SPACE FOUNDATION SYSTEM

A. The System in Practice

We can now address the space-related problems presented
in our scenario I-A within the context of our proposed system.

1) Aesthetics: In the case of music and ambient tracks
playing upon entering a specific location, audio files can be
assigned to a location, specifying which audio track is played
as long as the player remains in this space. When a player
enters a location that specifies a track, the current track is
interrupted in favor of the new one. The same approach can
be taken to many other features. A system subscribes to the
location changes of the player and derives data corresponding
to the current location. In the case of our scenario, the locations
of the village and the tower can be endued with the respective
audio files or post-processing specifications.

2) Game Mechanics and Rules: Spatial rules can be spec-
ified and implemented using the proposed system. In the
case of our scenario, we can specify that the dragon should
attack the player upon entering the location directly with
OnEnter(LocationIdentifier) instead of using collider volumes
as triggers. Special effects like the thunderstorm or narrative
events like a party dialogue can all be implemented analo-
gously. The same holds for specifying what items can be found
in a location. Similarly to the previous section, restrictions or
affordances can be specified directly for a location instead
of updating parameters upon collision with a trigger volume.
For instance, the boss arena can be specified to allow fire
magic, while combat mechanics can be restricted in all vil-
lages. Concerning respawn mechanics, we see potential in the
specification of stable points per location or groups thereof.
Respawning after a game over in a location currentLocation
would then automatically occur in a prespecified point cur-
rentLocation.stableRespawnPoint. Taking this concept further,
such a point in space could also be computed with location-
based semantics: it is possible to compute whether that point’s
location is visible to enemies, already occupied by allies or
other conditions.

3) Wayfinding and Quests: In our scenario, a naı̈ve im-
plementation would include a non-player character (NPC)
presenting a route to the player, which was manually created
to match the route from the NPC’s location to the goal. In
our scenario, this is the role of the village elder. Our solution
makes a different approach feasible: it is possible for NPCs
to be aware of locations and, therefore, to query the semantic
path (i.e., the sequence of locations) needed to go from one
location to another. Such a system allows for the dynamic
creation of directions, which can be embedded in the dialogue
system and then used by an arbitrary number of NPCs in any

location. Since the system allows the specification of location-
specific data, restraints can also be put on the query to match
the intended experience. For instance, we may specify whether
a location is known to the speaker and allow it to be included
in the dialogue. Each location’s difficulty, geographical data,
enemy presence, and more can be included to adapt the
system’s depth to the user’s needs.

4) Concluding the System in Practice: We conclude that
common spatial problems, such as the selection presented
in the scenario, can be meaningfully addressed with the
presented framework. The proposed features largely eliminate
the need for developers to implement suboptimal position-
based approximations to determine an entity’s location. These
improvements result from using more abstract semantics that
are closer to the problem domain than current practice.

B. Discussion

1) Workload: A central issue is the additional work re-
quired to create and maintain the system. It should be noted
that this paper does not propose any concrete implementa-
tion beyond high-level approaches, making it impossible to
accurately estimate the workload for using this system. Nev-
ertheless, we have outlined opportunities for integrating these
approaches into existing features to minimize the workload. In
the future, we envision a system that is automatically derived
from the scene’s geometry and functional components, which
would further alleviate this problem.

2) Complexity & Performance: A significant issue is that
the current system and its implementation do not offer any
control over the granularity of the partitioning. It is evident
that spaces of modest complexity can result in enormously
large node sets, potentially affecting the system’s usability. In
our earlier scenario set in an open-world game, the entire quest
takes place in the same macro space. It is easy to imagine
how the scenario’s tower would already require a substantial
number of nodes if we assume that each room constitutes
its own unit. This complexity is further exacerbated when
connecting these nodes within the spatial context of the open
map. Such complexity raises concerns about performance in
terms of both memory and computation, which will need to
be addressed in future work.

3) Abstraction: Currently, the system lacks the means to
group nodes meaningfully to allow for abstraction. In Section
VII-A, we discussed how the aesthetic features of the tower
and its immediate surroundings could be specified directly to
the respective location. At present, this would mean specifying
this information for every node belonging to the tower, which
is less than optimal. We argue that supporting hierarchy within
the final result should be a future priority. The integrity of
space is a hierarchical quality and depends on the granularity
with which a space is viewed. The existence of districts, as
proposed by Lynch [17], and their established role in level
design (as seen in [7]), supports this thesis. For this reason,
we propose pursuing a solution approach based on higraphs,
as presented in [22]. This point is crucial for the result’s
usability. The data structure should be usable for both humans

This is the accepted author manuscript of the following publication: D. Dyrda and C. Belloni, “Space Foundation System: An Approach to Spatial Problems in Games,” IEEE
Conference on Games, 2024. DOI: doi.org/10.1109/CoG60054.2024.10645661. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/10645661.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/CoG60054.2024.10645661
https://ieeexplore.ieee.org/document/10645661


and machines, making its visualization a central feature. The
inclusion of hierarchy would improve this aspect similarly
to [22].

4) Subjectivity: Since different individuals may have dif-
ferent interpretations of the same spatial elements, the precise
specification of delimiters and anchors can be influenced by
subjectivity. We attempt to mitigate this through detailed pro-
cedures and by keeping human-guided elements at a minimum.

C. Future Work

Our forthcoming efforts will be detailed in an upcom-
ing paper, where we will introduce an initial prototype to
demonstrate our methodology’s applicability. While this pro-
totype represents an essential step towards validating our ap-
proach, extensive development is required to achieve a robust,
production-ready implementation. The geometric complexity
of modern game spaces makes the procedure, as presented
in the expansion step (see Section VI-C3), susceptible to nu-
merous edge cases that future implementations must address.
Moving forward, we will prioritize usability, performance,
and seamless integration within game engines. Additionally,
exploring new features remains an open avenue for further
enhancement.

1) Hierarchy: Future efforts should integrate hierarchi-
cal structures within the framework to facilitate abstraction,
aiming to enhance system usability without compromising
intuitiveness. This solution has to set solid, formal axioms for
the relations between nodes from different levels as well as
the repercussions on the spatial relations present in the graph.

2) Visualization: There’s a clear need for an effective
visualization to depict subdivisions within the game scene.
This is particularly challenging for three-dimensional spaces.

3) Novel Spatial Features: Exploring location-based se-
mantics in game development opens the door to innovative
features and broader impacts, particularly in accessibility, en-
hancing user interfaces with features such as location readers
that provide information about the environment or systems that
dynamically adjust the difficulty of a location. It also heralds
advancements in game AI, making game agents location-aware
for improved navigation, strategy, and interaction. Addition-
ally, this approach promises benefits in optimization, analysis,
tutorial creation, navigation, and manipulation, especially in
immersive virtual reality (VR) experiences.

4) Secondary Scene Graph: Our proposed data structure
emerges as a viable complement to traditional scene graphs
used in most game engines, addressing the need for a spe-
cialized framework that tackles design and implementation
challenges from a more conceptual standpoint. As discussed
in Section III, moving beyond the rendering-centric role of
scene graphs allows for closer alignment with the design and
implementation of spatial problems. Our proposed framework
satisfies most conditions: it achieves a level of abstraction
significantly closer to the problem domain of spatial is-
sues. Unlike scene graphs, whose modeling capabilities result
mainly from grouping vertices (see [11]), the graph we propose
represents the game’s space on a more abstract, topological

level, focusing on the semantic interpretation of the geometry
rather than single objects and their positions.

VIII. CONCLUSION

This paper presents the Space Foundation System, a tech-
nology for game engines aimed at addressing prevalent spatial
challenges in digital games. We explored its fundamental
principles and a specific algorithm that underlies our solution,
along with proposed strategies for its integration into modern
game engines.

REFERENCES

[1] K. Salen and E. Zimmerman, Rules of play: Game design fundamentals.
MIT Press, 2004.

[2] J. Schell, The art of game design: A book of lenses, 3rd ed. CRC Press,
2019.

[3] N. Schrape, “The rhetoric of game space,” in Ludotopia, Spaces, Places
and Territories in Computer Games, E. Aarseth and S. Günzel, Eds.
transcript Verlag, 2019.

[4] J. Gregory, Game engine architecture, 3rd ed. CRC Press, 2019.
[5] Unity Technologies, “Unity scripting api: Transform,” 2024. [Online].

Available: https://docs.unity3d.com/ScriptReference/Transform.html
[6] Godot Engine Contributors, “Godot engine documentation: Transform

2d,” 2024. [Online]. Available: https://docs.godotengine.org/en/stable/
classes/class transform2d.html

[7] C. W. Totten, An architectural approach to level design, 2nd ed. CRC
Press, 2019.

[8] N. Azar, “The metrics of space: Molecule design,”
2013. [Online]. Available: https://www.gamedeveloper.com/design/
the-metrics-of-space-molecule-design

[9] R. O. D. Kelder, “Towards a framework for analytical game space
design,” Master’s thesis, Universiteit Utrecht, Faculty of Computer
Science, n.d.

[10] S. S. Maram, J. Pfau, J. Villareale, Z. Teng, J. Zhu, and M. S. El-Nasr,
“Mining player behavior patterns from domain-based spatial abstraction
in games,” in 2023 IEEE Conference on Games (CoG). IEEE, 2023,
pp. 1–8.

[11] H. Sowizral, “Scene graphs in the new millennium,” in IEEE Computer
Graphics and Applications, vol. 20, no. 1. IEEE, 2000, pp. 56–57.

[12] T. C. S. Cheah and K.-W. Ng, “A practical implementation of a 3d game
engine,” in International Conference on Computer Graphics, Imaging
and Visualization (CGIV’05), 2005, pp. 351–358.

[13] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language:
Towns, buildings, construction. Oxford University Press, 1977.

[14] S. Björk and J. Holopainen, “Games and design patterns,” in The Game
Design Reader, A Rules of Play Anthology, K. Salen and E. Zimmerman,
Eds. MIT Press, 2006.

[15] B. Kreimeier, “The case for game design patterns,”
2002. [Online]. Available: https://www.gamedeveloper.com/design/
the-case-for-game-design-patterns

[16] K. Hullett and J. Whitehead, “Design patterns in fps levels,” in Proceed-
ings of the Fifth International Conference on the Foundations of Digital
Games. Association for Computing Machinery, 2010, pp. 78–85.

[17] K. Lynch, The image of the city. MIT Press, 1964.
[18] D. Arribas-Bel and M. Fleischmann, “Spatial signatures - understanding

(urban) spaces through form and function,” in Habitat International, vol.
128, 102641, 2022.

[19] W. Dettlaff, “Space syntax analysis–methodology of understanding the
space,” in PhD Interdisciplinary Journal, vol. 1, 2014, pp. 283–291.

[20] S. Haq, “Where we walk is what we see: Foundational concepts and
analytical techniques of space syntax,” in HERD: Health Environments
Research & Design Journal, vol. 12, no. 1, 2019, pp. 11–25.

[21] F. D. K. Ching, Architecture: Form, space, and order, 4th ed. John
Wiley & Sons, 2015.

[22] D. Harel, “On visual formalisms,” in Communications of the ACM,
vol. 31, no. 5. ACM New York, 1988, pp. 514–530.

This is the accepted author manuscript of the following publication: D. Dyrda and C. Belloni, “Space Foundation System: An Approach to Spatial Problems in Games,” IEEE
Conference on Games, 2024. DOI: doi.org/10.1109/CoG60054.2024.10645661. The published version is available at IEEE Xplore: ieeexplore.ieee.org/document/10645661.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.godotengine.org/en/stable/classes/class_transform2d.html
https://docs.godotengine.org/en/stable/classes/class_transform2d.html
https://www.gamedeveloper.com/design/the-metrics-of-space-molecule-design
https://www.gamedeveloper.com/design/the-metrics-of-space-molecule-design
https://www.gamedeveloper.com/design/the-case-for-game-design-patterns
https://www.gamedeveloper.com/design/the-case-for-game-design-patterns
https://doi.org/10.1109/CoG60054.2024.10645661
https://ieeexplore.ieee.org/document/10645661

	Introduction
	Scenario
	Spatial Features
	Location Intrinsics
	Story
	Rules

	Problems
	Goal

	Vision
	Location
	Transform
	Features of the Space Foundation System
	IsInsideOf(transform, location)
	IsNeighbor(location1, location2)
	HasRelation(location1, location2, relation)
	GetShortestPath(location1, location2, optional relationMask)
	Subscription

	Challenges

	Related Work
	Level Design
	Game Analysis
	Scene Graph
	Architecture & Urban Planning

	Solution Approach
	The Location Graph
	Discretizing Space With Delimiters & Anchors
	Delimiters
	Delimiting Features
	Specifying Delimiters
	Delimiter Data

	Anchors
	Anchor Concept
	Specifying Anchors

	Location Graph Creation
	Preparation
	Anchor Step
	Expansion Step
	Resolving Underspecification
	Optimization
	Spatial Relations

	The Space Foundation System API

	The Space Foundation System
	The System in Practice
	Aesthetics
	Game Mechanics and Rules
	Wayfinding and Quests
	Concluding the System in Practice

	Discussion
	Workload
	Complexity & Performance
	Abstraction
	Subjectivity

	Future Work
	Hierarchy
	Visualization
	Novel Spatial Features
	Secondary Scene Graph


	Conclusion
	References

