Designing with Player Paths: Presenting a Game
Design Framework

Martin Schacherbauer
Technical University of Munich
Munich, Germany
martin.schacherbauer @tum.de

Abstract—Player paths are a central design paradigm game
designers use for video games. However, keeping track of all
designed player paths during development is difficult. This paper
proposes a framework that supports developers who use player
paths as a central design paradigm. To do so, we look at the
definitions of common terms regarding player paths and analyze
current workflows used in the video game industry by analyzing
presentations at game development conferences. By doing so, we
can ensure that our proposed framework uses knowledge from
both practitioners and scholars to bridge the gap between them.
The framework is based on the usage of graphs and is entirely
independent of the functionality of the graph in the video game,
ensuring maximal flexibility for the developers. The framework
uses features available in game engines, making it possible to use
in any development environment. Last, we also demonstrate the
tool’s functionality via a prototype of the framework in Unity.

Index Terms—Editor tool, framework, game design, game
development, game engineering, player paths, space, video games

I. INTRODUCTION

One of the main differences between traditional media—
like movies and music—and video games stems from the
interaction between the medium and the user [1]. A movie
watcher can not influence the movie’s ending. The linearity
allows the movie creator to directly influence the movie
watcher’s experience. With video games, the player’s actions
are vital to how the game proceeds and the player’s experience.
If a player does not give any input when playing a game, the
game might not progress or end with the player losing. The
player’s experience shaped by the game and the player’s past
experiences [2f influences these actions.

The non-linearity of games is represented as a space of
possibility for the player [3]]. This possibility space is what
game designers can design through rules and structures [4],
and the player performs actions and takes a path through
it. However, it is the goal of game designers to create an
experience for the player—in this relationship, the game is just
a secondary artifact [3[]. This problem is known as the second-
order design problem [4]. As the possibility space allows for
multiple outcomes depending on the player’s input on a given
game state [Sf], it is even more important for game designers
to focus on the experience they want to create. Following
Totten’s perspective that rewards and narratives are spatially
embedded [3]], we argue that choice is spatially embedded in
the game’s environment. We also see that many video games

Daniel Dyrda
Technical University of Munich
Munich, Germany
daniel.dyrda@tum.de

support different paths for players to approach the same goal—
the game’s possibility space reflects those paths. For instance,
if the objective is to retrieve an item from a guarded spot,
the player might be able to take the direct route protected by
enemies, resulting in combat. In contrast, another player might
try to find hidden paths and reach the item undetected.

Based on the interaction from the player, game developers
need an overview of their planned player paths and how they
support them in the game itself. This paper aims to propose a
framework that directly supports a design philosophy around
planned paths. We want to contribute to the field of game
design by showing what tools and methods the game devel-
opment industry uses and propose how game developers can
use game engines’ features to design with player paths as a
central design philosophy.

To do this, we

« investigate the meaning of choice, possibility space, and
player paths in game development,

e give an overview of which methods and tools the video
games industry currently uses, and

o propose how designers can use graphs and player paths
in additional ways during the development and design
process.

We chose these points to investigate and understand the
tools currently used and allow for a comparison between them.
Furthermore, we can draw informed conclusions on why game
developers chose them in the first place which will allow us
to propose extensions of existing methods to enable a more
player path-centric design philosophy. The paper focuses on
literature work on level design, choice in video games, and
different player playstyles. We use talks from level designers
in the industry as they give a more detailed insight into the
processes in game development companies. By incorporating
perspectives from academia and industry in our proposed
framework, we want to bridge the gap between academia and
industry, as both sides could benefit from each other [6].

II. TERMINOLOGY

Before analyzing ways of developing video games with
player paths in mind, looking at terms relevant to the topic
is necessary.

This is the accepted author manuscript of the following publication: M. Schacherbauer and D. Dyrda, “Designing with Player Paths: Presenting a Game Design Framework,” IEEE
Conference on Games, 2025. DOI: |do1.org/10.1109/CoG64752.2025.11114252| The published version is available at IEEE Xplore: fieeexplore.ieee.org/document/11114252}

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114252
https://ieeexplore.ieee.org/document/11114252

A. Choice

Salen and Zimmerman [4]] introduce two levels of choices:
micro and macro. They describe the difference in the follow-
ing way: “The micro level represents the small, moment-to-
moment choices a player is confronted with during a game.
The macro level of choice represents the way these micro-
choices join together like a chain to form a larger trajectory
of experience” [4, p. 61]. It is interesting to note that they
use experience in connection to the choices on the macro
level. Furthermore, they also introduce the term meaningful
play, where they mention an additional property of choice and
play—meaningfulness [4]. Considering choices on both the
micro and macro level is not feasible for a game designer,
as that would include all button presses, whenever the player
picks something up, or when the player uses the settings menu.
Instead, choices on the macro level, which are meaningful
and intentionally designed, must be considered and planned
around.

It also has to be noted that an action alone is not enough
to determine whether the choice made by the player is
meaningful or not—the context around the action also has
to be considered. For example, suppose the player stands in
front of a quest item and interacts with it. In that case, this
action progresses their current mission, while interacting with
a simple collectible on the ground might have a limited impact
on that quest’s progress. With this, we decide to focus on the
macro-level choices to be considered for the rest of the paper,
unless stated explicitly otherwise, due to the practicality and
importance of those choices in the game.

B. Space of Possibility

Salen and Zimmerman [4] introduce the space of possibility
after quoting Sudnow’s Pilgrim in the Microworld [7]. They
argue that Sudnow’s description of his actions while watching
TV gives an important insight for game developers: game
developers have to look at the game from the player’s perspec-
tive, not just by watching someone else play the game. This
ties into their definition of the space of possibility. They argue
that the space of possibility encompasses all actions a player
can perform in the game system in the future. They conclude
their definition of the space of possibility by stating that this
space can not be designed directly by the game developer as
game developers can design the meaning of actions but cannot
predict the meaning the player draws from that action.

In a general sense, whenever a human acts, they do so after
forming a goal—and forming a goal is making a choice [§].
Taking an action in a game inherently requires the player to
have made a choice based on the current game state. Therefore,
the space of possibility can also be described by and contains
all the choices a player can make given any game state.

This paper adopts the first definition of the space of pos-
sibility based on actions. However, the following approaches
will not be able to take all the actions of the player at any time
into account because that is simply not feasible. Instead, we
argue that while it is important to look at the complete space of
possibility for designing video games, reducing the actions in

the space of possibility to the actions that have a designed and
meaningful outcome covers the most important cases that have
to be looked at by game developers. This approach is suitable
for visualization during development because it reduces the
number of possible actions while considering those with a
meaningful outcome in the game.

C. Player Paths

While the space of possibility describes all possible actions,
a player path contains the actions the player took to progress in
the game. While the possibility space is non-linear, the player
path is the linear sequence of events a player takes. Often,
these actions are embedded in the game’s virtual world, as
space of possibility also suggests.

One definition from level designer Tommy Norberg [9]]
revolves around the level designer’s intention for a path. He
calls the path intended by the game’s designer to be taken by
most players main path. To give the player agency, a level
can include multiple secondary paths, allowing for multiple
approaches to the same goal. He also mentions parts of paths,
such as desired paths that players traverse to cut corners,
detours, or exploration paths for players who want to explore
the game’s world. Considering the player’s perception of paths,
the perceived path is the path players think they should take.
He embeds his model for paths in the game’s space. All these
paths need to be carefully designed by game designers.

Per our definition of player paths based on the player’s
actions and choices, they also reflect different playstyle prefer-
ences. It follows that player motivation and goal analysis can
also be an approach to define player paths. A vast array of past
studies puts players into different categories according to their
goals and behaviors in video games with video game-specific
distinct groups [10]-[12], which can also include aspects from
the psychological field like BrainHex [|13]]. Another approach
comes from Kabhila er al. [14]], who group players based on
their metagaming activities, i.e., activities beyond what they
do while playing the video game [4]]. In a meta-synthesis by
Hamari and Tuunanen [15], they conclude their analysis of
14 works on player types in video games by proposing five
main player motivations—achievement, exploration, sociabil-
ity, domination, and immersion.

In the scope of this paper, we refer to player paths as
designed ways to complete an objective, similar to Norberg’s
definition [9]. We do not look at the micro level of a player
path, which includes the concrete 2D or 3D movement through
a level, but instead at the macro level, which includes designed
elements from the game developer. We propose this more
zoomed-out view due to feasibility during game development
and the diminishing returns of inspecting player paths that
only differ in their movement. Instead, our work gives game
developers tools and methods to visualize how players can
interact within the designed game space and objectives. Still,
the motivations found by the aforementioned works should
play an important role in designing player paths.

This is the accepted author manuscript of the following publication: M. Schacherbauer and D. Dyrda, “Designing with Player Paths: Presenting a Game Design Framework,” IEEE
Conference on Games, 2025. DOI: |do1.org/10.1109/CoG64752.2025.11114252] The published version is available at IEEE Xplore: fieeexplore.ieee.org/document/1 1114252}

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114252
https://ieeexplore.ieee.org/document/11114252

III. PROBLEM STATEMENT

Instead of designing levels with a specific type of player in
mind, designers use the concept of choice [16]. As a result
of those choices, which are game-specific and rely on the
available actions to a player, the game designers can assign
those actions to a specific playstyle, such as a stealth or
confrontational approach, tying into the experience [[16[]. This
is represented in the player paths. Designing a level becomes
more complex, as levels might support multiple player paths,
and game designers need to be aware of the relationships
between different player paths instead of tracking one path.
Keeping track of those player paths can become difficult for
game developers and designers without the required knowl-
edge and tools [17]. Therefore, this paper aims to make
player paths a more attractive design paradigm by presenting
solutions already used in the video game industry to this prob-
lem and proposing a framework that assists designers while
planning a level to support multiple player paths embedded in
the game’s space simultaneously.

IV. RELATED WORK

The previous sections provide an academic overview of the
topic. To assist in bridging the gap between academia and
industry [6f], for this section, we analyzed various talks at
video game conferences. We read interviews in media outlets
focusing on video games to understand how game designers
think and discuss spatial choice and player paths. We did this
to gather information on recent developments in the video
game industry. Awareness of recent developments is especially
important because the video game industry changes rapidly,
and our proposed framework should accommodate the current
industry practice. We try to merge concepts from both parties
to create an approach that both practitioners and researchers
can use.

A. Path Visualization

In a talk at devcom 2023, level designer Pears [18]] talks
about a game he worked at while highlighting one concrete
example of how he designed one game’s level. He mentions a
major challenge for level designers when supporting multiple
player paths: leading all the players to the same objective. This
is especially important because the objective is the point where
the game’s story progresses. Designers need tools that also
show the points of key actions and choices of a level with an
adequate symbol. During his presentation, he shows multiple
pictures of the level, similar to Fig.|l} with paths drawn as lines
and symbols for objectives. We cannot determine whether the
game engine directly shows these lines and symbols during de-
velopment or whether they are just added for the presentation.
Tools showing planned paths for different playstyles might
benefit the workflow as it allows designers to illustrate the
planned paths intuitively [17]. Furthermore, actively marking
points where paths converge or separate allows designers to
design more consciously around such points to better grasp
how different players progress in a level, even if they switch
between playstyles.

B. Pacing Graphs

Level designer Ellis [19] describes one way to plan a level
based on its gameplay beats and pacing. Gameplay beats refer
to “the main events and activities that the player will undertake
and how these are spaced out and timed in your level” [[19} Ch.
Gameplay Beats]. Pacing represents intensity throughout the
game based on the player’s planned experience. Interestingly,
he mentions different playstyles and how they affect the pacing
of a level. While he does not propose having different pacing
graphs for different player paths, he instead talks about a way
to keep a level’s tempo similar independent of the player’s
actions if the designer wants it that way.

We can apply this concept to designing levels with multiple
paths. This approach might be beneficial in terms of seeing
how different types of players might experience the level.
Different players’ experiences can be mapped by creating
versions of this timeline graph based on the players’ actions
during the level, as demonstrated by the tool PaceMaker [20].
For instance, a player with a primary focus on achievement
might spend more time carefully investigating every room
to find hidden secrets [13]. The specific pacing graph can
specify the beats in more detail by setting up pacing graphs
for different player paths. This results in a more accurate
prediction of the perceived intensity.

C. Quest Systems

Game developer Szczepanski [21] discusses his experience
with quest systems in Horizon Zero Dawn [22]. He mentions
two kinds of systems—strict systems with a centralized system
managing all quests and their interactions and relaxed systems
where the quests directly interact with each other. The main
finding for our paper’s framework is that tool developers for
quests often define specific keywords for the quest design-
ers. These restrict what a quest can do. He also mentions
that graphs are suitable for such quest systems, and edges
connecting nodes can be more meaningful than simple cause-
and-effect relationships.

Game programmer Iwariski [23] supports our finding that
graphs represent quest systems in video games. The project
he worked on, Cinematic Feel [24], uses predefined nodes for
both their quest and scene graphs. Both these systems control
the game’s output. Scene graphs have a bigger scope and can
contain quest graphs. Additionally, quest systems follow an
event-based approach, while scene systems follow a tick-based
approach. One key takeaway from this talk was the simulator
view, where game developers can test specific sequences of
graph nodes starting with a selected node. However, these tests
require a manual setup and can not cover all player cases due
to the complexity of some of the scene or quest graphs.

D. Playing with Certain Playstyle Preferences

Vandenberghe [25] proposes the 5 Domains of Play model
that allows game developers to play video games like another
type of player. The model closely derives from the Five-
Factor Model, which describes people’s personalities based on
their motivations [26]]. As the model could not find a specific

This is the accepted author manuscript of the following publication: M. Schacherbauer and D. Dyrda, “Designing with Player Paths: Presenting a Game Design Framework,” IEEE
Conference on Games, 2025. DOI: |doi.org/10.1109/CoG64752.2025.11114252] The published version is available at IEEE Xplore: fieeexplore.ieee.org/document/1 1114252}

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114252
https://ieeexplore.ieee.org/document/11114252

Fig. 1. Blockout of level Ebunike with drawn-in paths. Inspired by Pears [16]

characteristic in gaming for one of the five factors [25]], his
model only shows four domains represented on a 2D graph
with two characteristics on each axis. He proposes that by
playing video games while taking on the role of a specific
type of player, game developers can learn what kind of effects
other video games, or also their own game, have on a player
that tends to some domain, e.g., skilled play.

Such an approach can raise awareness among game devel-
opers regarding the different motivations of players. When
analyzing a game with a special focus on a specific playstyle
preference, game designers can more accurately describe the
experience and also adjust the experience if wanted. Especially
for indie developers, who often struggle to get sufficient
playtesters [27], analyzing games based on different motiva-
tions might reduce players’ issues with the game.

V. FRAMEWORK

One concept we found repeatedly in the aforementioned
talks and works was the concept of graphs as an abstraction.
This abstraction layer allows game developers to work in
parallel—such as designing a level, while another developer
works on fundamental mechanics needed for the level. Our
framework aims to use graphs as a tool to model choice in
space and resulting player paths to help during the process
of designing levels. As another side effect, the graph acts as
a common language between multiple disciplines—such as
developing, designing, and managing. This, in turn, reduces
potential miscommunication as different teams use different
communication styles [18].

The workflow we want to support with the tool is as follows:

1) Identify choices to incorporate in the level.

2) Represent these choices in the editor.

3) Connect these choices with paths.

4) Visualize the path in the editor and evaluate it.

We use graphs as this abstraction layer between the func-
tionality in the video game and the design process during
development. Especially of interest are graphs that model
choices on the macro level in the game and link them to
the game space. Tool developers can use edges and vertices
(nodes) to visualize the usage and functionality of those graphs
during development. While graphs are used multiple times,
such as unlock requirements, skill trees, and many more, our
primary focus is player paths and how they can be visualized
for the designer or developer during development. This section
focuses on how game engines provide all the features required
to support our framework. Section [VI|shows a proof of concept
of the proposed framework.

A. Graph

As one of the core concepts revolves around graphs, the
game engine has to support a view for graph-like structures.
This view is available in most game engines due to their
versatile usage. For instance, graphs often visualize shaders. In
the case of a high-level game engine, which focuses on giving
game developers with little experience the option to make a
game, graphs often visualize quest dependencies in the game
engine. By saying this, we also have to acknowledge that the
framework requires some programming knowledge. However,

This is the accepted author manuscript of the following publication: M. Schacherbauer and D. Dyrda, “Designing with Player Paths: Presenting a Game Design Framework,” IEEE
Conference on Games, 2025. DOI: [doi.org/10.1109/CoG64752.2025.11114252] The published version is available at IEEE Xplore: [ieeexplore.ieee.org/document/11114252]

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114252
https://ieeexplore.ieee.org/document/11114252

we still want to show that even with game engines that do
not focus on programming, implementing our framework is
still possible. Given this view, the developers can visualize
and build their graph system, provided that they have an
implementation for the nodes and edges.

B. Nodes

The nodes’ definitions must fulfill the game’s requirements,
but we propose to include at least a position that is related to
the node—Ilinking nodes to space—and some way to identify
which nodes belong to which player path. The framework
achieves the first requirement by returning a vector of the
position of the node’s objective. This position can refer to
the central position of all enemies the player has to neutralize
or the position of an item the player must collect. For the
second requirement, a node can be assigned to one or multiple
player paths by defining an enumeration flag, with each bit
referring to a specific player path. By allowing the assignment
of multiple paths to a node, we ensure complete flexibility for
the designer.

C. Edges

We have to note that for this framework, edges only connect
two nodes with a cause-and-effect meaning. It is possible to
give edges other meanings, such as if node A is completed,
node B is unavailable to the player, making the graph and
the system more expressive. However, the framework should
act as a base with functionalities that can be used in various
video games. Therefore, we decided against putting these
functionalities in the scope of this framework.

D. Visualization in the Editor View

Inspired by how Pears’ [16]] screenshot shows the level with
the paths drawn, see Fig. [I] our proposed framework shows
player paths according to the given graph by drawing lines
in different colors into the editor view. The visualization tool
has a graph containing nodes and edges with the proposed
values in the previous paragraphs as input. As we want the
visualization only in the editor view, we propose to use game
engine features that only show in the editor view. Because
game developers often require information in their editor view
that is not supposed to show in the game, most game engines
offer such features and, therefore, a good option to display
that information.

In order to visualize paths, the visualization tool finds all
pairs of connected nodes that share at least one path type.
For each pair, the visualization tool draws a line between the
two positions, with the color depending on the player path
type. Different colors allow the user to distinguish multiple
paths in the editor view. Visualizing a pair of nodes that
shares more than one player type needs to be addressed, as
otherwise, one path might draw right over the other. Therefore,
the visualization tool must allow users to select which player
paths they want to show in the editor, also allowing people
with colorblindness to use the tool. Other approaches are
possible, e.g., adding small offsets to the position or using
transparent colors.

VI. IMPLEMENTATION IN A GAME ENGINE

In this section, we will show a prototype of the proposed
tool, as discussed in section We developed the tool in
Unity [[28]]. We chose Unity because of the authors’ familiarity
with the engine and the programming language C#. Unity is
also among the industry’s two most used game engines [29].

Beginning with the graphs, we use the open-source tool
xNode. xNode extends Unity with an additional xNode-view,
basic tools, and class definitions for graphs and nodes. Users
can use their custom-defined graphs and nodes in the xNode-
view. These nodes show predefined entry and exit points, and
the user can draw edges between the nodes using the entry
and exit points, as seen in Fig[3] Furthermore, it allows users
to create a custom editor for their defined nodes, which makes
xNode suitable for more advanced graphs.

Using the base class NodeGraph provided by the xNode-
package, we derive a new class LevelNodeGraph, which will
contain all our graph nodes. With this implementation, users
can create a graph in Unity with all kinds of nodes. To
access any values in the scene, we create an additional class,
SceneLevelNodeGraph, which derives from the xNode class
SceneGraph<LevelNodeGraph>. The derivation allows us to
attach that class as a script to a game object in a scene and,
therefore, reference other in-scene objects.

Two additional parts are required before implementing the
nodes. First, we define an enumeration type, PlayerPathType,
with the Flag attribute. By accordingly using the defined
values in the enumeration as bit-flags (1, 2, 4, 8, and so
on), Unity automatically lets users assign each type defined
in the enumeration separately to a variable of the enumeration
type. In our implementation, we define an interface /Objective,
representing an objective in the game. All our objectives
implement this interface, as seen in Fig. 2] The only method
required is GetCenterPosition(), which returns the objective’s
central position. The position should follow the objective’s
goal, such as the center point of an area the player has to enter
or the middle point of all enemies that need to be defeated.

Regarding the nodes, we implement a base node contain-
ing all the functionality in order to fulfill the requirements
described in section |V The class LevelObjectiveNode derives
from the xNode class Node. This allows designers to define
the node’s entries and exits and visualize these in the xNode-
view while using the functionality provided by the xNode-
package. Furthermore, we implement a few additional types
of nodes with different objectives to show the tool’s possible
expressiveness. They derive from LevelObjectiveNode. For the
baseline functionality, we define variables for both the input
and output of the node. By adding the Input and Output tags to
each of the variables, respectively, xNode visualizes both in the
graph view, see Fig[3] Additionally, edges between different
nodes can be drawn by clicking on one of the ports. The class
has a member of type PlayerPathType, representing the node’s
planned player path(s). The node also provides a function,
GetObjective(), that deriving classes must implement. The
method returns the IObjective associated with the node.

This is the accepted author manuscript of the following publication: M. Schacherbauer and D. Dyrda, “Designing with Player Paths: Presenting a Game Design Framework,” IEEE
Conference on Games, 2025. DOI: |doi.org/10.1109/CoG64752.2025.11114252] The published version is available at IEEE Xplore: fieeexplore.ieee.org/document/1 1114252}

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114252
https://ieeexplore.ieee.org/document/11114252

<<Interface>>
I0bjective

<<event>> + OnDone: EventHandler|
+ GetCenterPosition(): Vector3

—— <<enumeration>> A A A
LevelObjectiveNode PlayerPathType | _ pmmmmmemmemeessesoooe- []

entry: int .P!‘f’f‘?'.P.a.‘t‘.TYE"?> <<Flage>> EnterAreaObjective DefeatingObjective PickupableObjective

exit: int Fighter

+ GetObjective(): IObjecti Stealth - ObjectiveCompleted(object, - ObjectiveCompleted(object, - ObjectiveCompleted(object,

etObjective)- jec"Z Hacker EventArgs): void EventArgs): void EventArgs): void
ibjectives <ﬁ:bjecﬁves ibjectives
LevelEnterAreaNode ILevelDefeatObjectivesNod LevelPickupObjectiveNode Enterable Defeatable Pickupable

objective: # objective: # objective: <<event>> + OnEntered: <<event>> + OnDefeated: <<event>> + OnPickedup:
EnterAreaObjective DefeatingObjective PickupableObjective EventHandler EventHandler EventHandler
+ GetObjective(): I0bjective + GetObjective(): I0bjective + GetObjective(): I0bjective + Enter(GameObject): void + Defeated(GameObject): void + Pickup(GameObject): void

Fig. 2. UML diagram containing the node setup (left) and the objective setup (right).

Level Defeat Objectives

Entry

Level Enter Area

Entry

Level Pickup Objective

Level Start Entry

Level Enter Area

Level End

Path Ty Hacker

Level Enter Area

Entry

Entry

Entry

Level Enter Area

yer Path Ty

tive

Fig. 3. Example graph for a level realized with xNode and Unity.

Last, we implement the class responsible for visualizing the
planned player paths in the editor, LevelGraphVisualizer. It
visualizes a SceneLevelNodeGraph. Additionally, it keeps a
list of each player path containing the nodes attributed to it in
a dictionary, with each player path type as its key. We opted
to update those lists the first time the graph is assigned and
allow the user to manually trigger that update whenever they
want. We draw the lines in OnDrawGizmos(). The method
iterates through all the entries in the dictionary’s lists, sets
a color according to the PlayerPathType, and then iterates
through all the nodes in the saved list. For each node, we
check all connected nodes. The visualization tool draws a
line between the two node’s objectives if they are of type
LevelObjectiveNode and also in the list (which is equivalent
to checking whether the same player path type is set). Fig.]
shows a demonstration of the tool, with Elc) being the
realization of the proposed functionality in Fig. |1} The project
and code are available to interested scholars and practitioners
on request.

VII. EVALUATION & VALIDATION
A. Alignment with Existing Approaches

The framework’s goal was to use common parts of game
engines in order to support many game engines. We build on
standard game development practices, such as graphs, editor-
only graphics, and the game space for our framework. Fur-
thermore, we realize concepts of choice and pacing diagrams
by visualizing them in the game space via our framework. Our
framework complies with and builds on existing approaches.

B. Practical Implementation

As shown in section [V the framework can be implemented
in Unity. The implementation requires knowledge of the
chosen game engine and object-oriented programming. Given
these circumstances, the implementation of the framework is
feasible, especially for tool developers.

C. Common Language

As seen in Fig. [3] the framework’s basis on graphs allows
for the tool developer to give game designers, even without

This is the accepted author manuscript of the following publication: M. Schacherbauer and D. Dyrda, “Designing with Player Paths: Presenting a Game Design Framework,” IEEE

Conference on Games, 2025. DOI: |do1.org/10.1109/CoG64752.2025.11114252] The published version is available at IEEE Xplore: fieeexplore.ieee.org/document/1 1114252}
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114252
https://ieeexplore.ieee.org/document/11114252

Fig. 4. Blockout of Level Ebunike, based on [I8]], with player paths visualization. (a) is a top-down representation of the entire level, (b) a player view of
the first part of the level, and (c) a player view of the second part of the level. Made in Unity.

programming knowledge, the opportunity to create and use
these graphs, as the tool developer can give the nodes intuitive
names that hint at the purpose and functionality of the node.
The suitability of graphs as a common language is further
supported by level designers [21]], [23]] and scholars [17].

D. Potential Applications

As the framework relies on modeling choice in the possi-
bility space, our framework is applicable for games that aim
to carefully design around choices and multiple player paths.
Games that prominently feature player paths, for instance,
by giving the player exclusive skills, benefit most from the
framework, as it helps game designers visualize different paths
and see how players with specific skills might complete the
level. However, these paths do not need to be tied to specific
skills, as player motivation can lead to different approaches of
players as well [25]]. Therefore, our framework can benefit any
game that incorporates choice in the game space. For instance,
sandbox games that position unique special structures in the
game space can use the framework to visualize the different
paths through these structures based on player motivations.

VIII. DISCUSSION
A. Challenges & Limitations

1) Explicit Choice Modeling: Our framework proposes the
explicit modeling of choice in video games. While explicit
modeling has advantages, such as being able to more accu-
rately design for a specific experience [19], it restricts the
game designer as it forces them to explicitly model choice.
Furthermore, explicit choice also means restricting choice, as
it is impossible to model an infinite number of outcomes.
However, as the complexity introduced by choice already
leads to game developers introducing the illusion of choice
to reduce the game’s overall complexity [30], this might not

be a negative aspect. Still, it has to be mentioned that the
framework relies on explicit choice modeling.

2) Additional Workload: Our framework requires a graph
as an input with nodes representing some choice embedded
in space. However, a game designed around having choice
embedded in space does not mean that it has a graph rep-
resentation for that choice. Furthermore, no matter if the
game project already has an implementation for the graph,
the framework’s requirements, while minor, pose an additional
workload for the game developers. However, as graphs are
already used by game developers [19]], [21]], [23], such graphs
are often already available.

3) Simplicity of Framework: The framework’s base func-
tionality is limited. This limitation is even more present in
the implementation, as, for instance, walls and floors do not
influence the path drawing. The feature complexity is limited.
While this means that custom-domain usages require more im-
plementation work, this is also a benefit of the implementation.
The tool’s simplicity leads to less bloated engine components
while supporting the established design approach.

B. Opportunities & Implications

1) Building on the Framework: The framework is
lightweight and extensible, as it does not require any specific
knowledge about the choices except for the position and an
assigned player path. Implementing the position query can also
be handled by other approaches, such as the Space Foundation
System [31]. The framework can be used as a baseline for
more works, like path coverage or simulation of specific paths
during development, as already shown by [23]. Furthermore,
the framework allows for more debug information to be
displayed based on the player paths, such as the predicted
time to complete the path, the number of skill checks required
to complete the path, or the number of users that took a

This is the accepted author manuscript of the following publication: M. Schacherbauer and D. Dyrda, “Designing with Player Paths: Presenting a Game Design Framework,” IEEE
Conference on Games, 2025. DOI: |do1.org/10.1109/CoG64752.2025.11114252] The published version is available at IEEE Xplore: fieeexplore.ieee.org/document/11114252}

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://doi.org/10.1109/CoG64752.2025.11114252
https://ieeexplore.ieee.org/document/11114252

specific path after a playtest session. Similar gameplay analysis [10] R. Bartle, “Hearts, clubs, diamonds, spades: Players who suit muds,”
approaches are described in [32] and [33]. - 11\1993 Motivations for sl in o - CoberPsveholoes &
. . . . Yee, “Motivations for play in online games,” CyberPsychology

2) Spatla.lly Embedded Choice in More Games: . Not every behavior, vol. 9, no. 6, pp. 772=775, 2006.
game is designed around player paths and has choice embed- [12] V. Klézl and S. Kelly, “Negativists, enthusiasts and others: a typology
ded in space. For instance, choices in games where dialogues of players in free-to-play games,” Multimedia Tools and Applications,

he ol X Iv choi T vol. 82, no. 5, pp. 7939-7960, 2022.
represent the player’s only choice are not necessarily tied to [13] L. E. Nacke, C. Bateman, and R. L. Mandryk, BrainHex: Preliminary
the game space—but the resulting reaction could be. Similarly, Results from a Neurobiological Gamer Typology Survey. Springer
completing a level in a real-time strategy game campaign Berlin Heidelberg, 2011, pp. 288-293. .

. .. N . [14] J. Kahila, T. Valtonen, S. Loépez-Pernas, M. Saqr, H. Vartiainen,
mlght benefit from giving players ﬂ:le opthn of a_ttaCk.lng the S. Kahila, and M. Tedre, “A typology of metagamers: Identifying player
highly protected castles from multiple points with different types based on beyond the game activities,” Games and Culture, 2023.
types of units. The main goal of the framework was to propose [15] J. Hamari and J. Tuunanen, “Player types: A meta-synthesis,” 2014.

i KAl h h this ki [16] M. Pears, “Cyberpunk 2077,” 2017, retrieved March 12, 2025. [Online].
and support a specific workflow, and even though this kind Available: https://www.maxpears.com/2017/02/25/cyberpunk-2077/
of workflow is most commonly used in adventure games, we [17] G. Wallner and S. Kriglstein, “Visualization-based analysis of gameplay
think that our framework can inspire and aid game developers data — a review of literature,” Entertainment Computing, vol. 4, no. 3,
. . . pp- 143-155, 2013.
of other genres to think about spatially embedded choice. [18] M. Pears, “Cyberpunk 2077 - Ebunike Level Construction,” 2023,
3) Using Graphs for Evaluation: The graph-based ap- Presentation at devcom Developers Conference 2023.
proach allows game developers to apply well-known graph [19] P. Ellis, “Single Player Level Design Pacing and Gameplay Beats
. - Part 1/3)” 2015, retrieved January 10, 2024. [Online]. Avail-
algorithms. These can be used to find the shortest path for a able: |https://www.worldofleveldesign.com/categories/wold-members-
specific player path, check whether a player can reach certain tutorials/peteellis/level-design-pacing- gameplay-beats-part1.php
nodes given a player path, or find out whether the path includes [20] J. Geheeb, D. Dyrda, *},nc,l S. Geheeb, “Pacemaker: A practical tool
. . . for pacing video games,” in 2024 IEEE Conference on Games (CoG).
cycles. Game designers can generate more information about IEEE, 2024.
their layout and player paths, which helps them to refine or [21] L. Szczepanski, “Building Non-Linear Narratives in Horizon: Zero
fix problems related to a player path Dawn,” 2017, retrieved January 29, 2024. [Online]. Available: https:
’ /Iwww.gdcvault.com/play/1024158/Building- Non-linear- Narratives-in
[22] Guerrilla Games, “Horizon zero dawn,” [PlayStation 4, PlayStation 5,
IX. CONCLUSION Windows], 2017,
This paper addresses choice, possibility space, and player [23] S. Iwanski, “The Pillars of Scene System in Cyberpunk 2077,” 2023,
hs i id devel W h hoi . devcom Developer Conference 2023.
paths 1n video géme eveoopr'nent. € argue that ¢ O.IC?'IS [24] CD Project, “Cinematic Feel,” 2020, retrieved January 30, 2024.
often represented in space in video games, i.e., the possibility [Online]. Available: |https://www.cdprojekt.com/en/capital- group/eu-
space, and found that game designers commonly use graphs to projects/32017-cinematic-feel/ i o

. li hoi Our fi K bi hoi [25] J. VandenBerghe, “Applying the 5 Domains of Play: Acting Like
Ylsua 1Z€ choice. Vur Iramewor propose§ tO combine choice Players,” 2013, retrieved January 17, 2024. [Online]. Available:
in space and graphs to represent the possibility space through https://www.youtube.com/watch?v=6uX6ye66NKO
player paths. Nodes in the graph represent choices that can [26] J. M. ’Plgman, “P_ersonahty structure: Emergence of the five-factor
b d ified iti in th 0 model,” Annual review of psychology, vol. 41, no. 1, pp. 417-440, 1990.

€ mapped to speciile POSI ons 1n € game space.. ur [27] N. Moosajee and P. Mirza-Babaei, “Games User Research (GUR) for
framework uses these spatially embedded choices and visual- Indie Studios,” in Proceedings of the 2016 CHI Conference Extended
izes different player paths based on carefully designed linear Abstracts on Human Factors in Computing Systems. ACM, 2016.
f choi h desi The f K [28] Unity Technologies, “Unity,” retrieved February 07, 2025. [Online].
sequences 'O choices to the game §51gner. . € Iramewor: Available: fhttps://unity.com
allows designers to work more consciously with player paths [29] G. 2025, “Gdc 2025 state of the game industry,” 2025, retrieved March
in their development process. 13, 2025. [Online]. Available: https://gdconf.com/news/gdc-2025-state-
game-industry-devs-weigh-layoffs-ai-and-more:
[30] B. Alborov, “Illusion of choice is better than choice: choices and illu-
REFERENCES sions as narrative mechanics,” 2017, retrieved March 13, 2025. [Online].
[1] J. Schell, The Art of Game Design: A book of lenses, 3rd ed. CRC Available: https://www.gamedeveloper.com/design/illusion-of-choice-
Press, 2019. is-better-than-choice-choices-and-illusions-as- narrative- mechanics
[2] L. Ermi and F. Méyrd, “Fundamental components of the gameplay [31] D. I?yrda and C~_ Belloni,”“_Space foundation system: An approach to
experience: Analysing immersion,” in Proceedings of DiGRA 2005 spatial problems in games,” in 2024 IEEE Conference on Games (CoG).
Conference: Changing Views: Worlds in Play. Tampere: DiGRA, 2005. IEEE, 2024. .
[3] C. W. Totten, Architectural approach to level design, 2nd ed. Boca (32] S. S .Maram, 1. Pfau,.J‘ Villareale, Z. Teng, J Zhu, and M S. EI‘N‘.’“’
Raton: CRC Press, Taylor & Francis Group, 2019. “Mining player behavior patterns from domain-based spatial abstraction
[4] K. Salen and E. Zimmerman, Rules of play: Game design fundamentals. in games,” in 2023 IEEE Conference on C.}ames (CoG). IEEE’ 2023.
MIT press, 2003. [33] Z. Teng, J. Pfau, S. S. Maram, and M. Seif El-Nasr, “Interactive player
[5] J. Juul, “Introduction to game time,” in First Person: New Media as journeys: Co-designing a process visualization system to video game
Story, Performance, and Game. MIT Press, 2004, pp. 131-142. analytics,” in Proceedings of the 19th International Conference on the
[6] J. Greenwood, L. Achterbosch, A. Stranieri, and G. Meredith, “Under- Foundations of Digital Games, ser. FDG 2024. ACM, 2024.
standing the gap between academics and game developers: an analysis
of gamasutra blogs,” in International Conferences Interfaces and Human
Computer Interaction, online. Inderscience Publishers, Kent, Ohio, USA,
2021, pp. 141-148.
[7] D. Sudnow, Pilgrim in the Microworld. Warner Books New York, 1983.
[8] D. A. Norman, The Design of Everyday Things: Revised and Expanded
Edition. Basic Books, 2013.
[9] T. Norberg, “Player paths,” 2021, retrieved March 08, 2025. [Online].
Available: https://x.com/the_Norberg/status/1374469984127045639
This is the accepted author manuscript of the following publication: M. Schacherbauer and D. Dyrda, “Designing with Player Paths: Presenting a Game Design Framework,” IEEE
Conference on Games, 2025. DOI: |do1.org/10.1109/CoG64752.2025.11114252| The published version is available at IEEE Xplore: fieeexplore.ieee.org/document/1 1114252}
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://x.com/the_Norberg/status/1374469984127045639
https://www.maxpears.com/2017/02/25/cyberpunk-2077/
https://www.worldofleveldesign.com/categories/wold-members-tutorials/peteellis/level-design-pacing-gameplay-beats-part1.php
https://www.worldofleveldesign.com/categories/wold-members-tutorials/peteellis/level-design-pacing-gameplay-beats-part1.php
https://www.gdcvault.com/play/1024158/Building-Non-linear-Narratives-in
https://www.gdcvault.com/play/1024158/Building-Non-linear-Narratives-in
https://www.cdprojekt.com/en/capital-group/eu-projects/32017-cinematic-feel/
https://www.cdprojekt.com/en/capital-group/eu-projects/32017-cinematic-feel/
https://www.youtube.com/watch?v=6uX6ye66NK0
https://unity.com
https://gdconf.com/news/gdc-2025-state-game-industry-devs-weigh-layoffs-ai-and-more
https://gdconf.com/news/gdc-2025-state-game-industry-devs-weigh-layoffs-ai-and-more
https://www.gamedeveloper.com/design/illusion-of-choice-is-better-than-choice-choices-and-illusions-as-narrative-mechanics
https://www.gamedeveloper.com/design/illusion-of-choice-is-better-than-choice-choices-and-illusions-as-narrative-mechanics
https://doi.org/10.1109/CoG64752.2025.11114252
https://ieeexplore.ieee.org/document/11114252

	Introduction
	Terminology
	Choice
	Space of Possibility
	Player Paths

	Problem Statement
	Related Work
	Path Visualization
	Pacing Graphs
	Quest Systems
	Playing with Certain Playstyle Preferences

	Framework
	Graph
	Nodes
	Edges
	Visualization in the Editor View

	Implementation in a Game Engine
	Evaluation & Validation
	Alignment with Existing Approaches
	Practical Implementation
	Common Language
	Potential Applications

	Discussion
	Challenges & Limitations
	Explicit Choice Modeling
	Additional Workload
	Simplicity of Framework

	Opportunities & Implications
	Building on the Framework
	Spatially Embedded Choice in More Games
	Using Graphs for Evaluation

	Conclusion
	References

